
Real-Time Stereo Visual Odometry for Autonomous Ground Vehicles

Andrew Howard

Abstract— This paper describes a visual odometry algorithm
for estimating frame-to-frame camera motion from successive
stereo image pairs. The algorithm differs from most visual
odometry algorithms in two key respects: (1) it makes no prior
assumptions about camera motion, and (2) it operates on dense
disparity images computed by a separate stereo algorithm.
This algorithm has been tested on many platforms, including
wheeled and legged vehicles, and has proven to be fast, accurate
and robust. For example, after 4000 frames and 400m of
travel, position errors are typically less than 1m (0.25% of
distance traveled). Processing time is approximately 20ms on
a 512x384 image. This paper includes a detailed description
of the algorithm and experimental evaluation on a variety of
platforms and terrain types.

I. I NTRODUCTION

Localization is a key capability for autonomous ground
vehicles, and is typically performed using a combination of
wheel odometry (from joint encoders) and inertial sensing
(gyroscopes and accelerometers). This approach has two
limitations, however: inertial sensors are prone to drift,
and wheel odometry is unreliable in rough terrain (wheels
tend to slip and sink). Visual odometry, which estimates
vehicle motion from a sequence of camera images, offers
a natural complement to these sensors: it is insensitive to
soil mechanics, produces a full 6DOF motion estimate, and
has lower drift rates than all but the most expensive IMUs.

This paper describes a real-time stereo visual odometry
algorithm that is particularly well-suited to ground vehicle
applications. Our motive for adopting a stereo, rather than
monocular, approach derives from the observation that many
ground vehicles are already equipped with stereo cameras
for obstacle detection and terrain sensing, and that the stereo
range data produced by these systems can be exploited for
visual odometry. That is, the combination of stereo ranging
and stereo visual odometry is generally faster and more
reliable than stereo ranging followed by monocular visual
odometry.

The basic algorithm is as follows: for a given pair of
frames, (1) detect features in each frame (corner detection),
(2) match features between frames (sum-of-absolute differ-
ences over local windows), (3) find the largest set of self-
consistent matches (inliers), and (4) find the frame-to-frame
motion that minimizes the re-projection error for features

A. Howard is with the Jet Propulsion Laboratory, CaliforniaInstitute of
Technology, Pasadena, CA 91109; andrew.howard@jpl.nasa.gov.

The research described in this paper was carried out at the Jet Propulsion
Laboratory, California Institute of Technology, under a contract with the
National Aeronautics and Space Administration. This work was supported
by the DARPA Learning Applied to Ground Robotics Program (LAGR), the
DARPA Biodynotics Program (BigDog) and the NASA Mars Technology
Program (MTP).

in the inlier set. The inlier detection step (3) is the key
distinguishing feature of the algorithm. The feature matching
stage inevitably produces some incorrect correspondences,
which, if left intact, will unfavorably bias the frame-to-frame
motion estimate. A common solution to this problem is to
use a robust estimator that can tolerate some number of false
matches (e.g., RANSAC [4]). In our algorithm, however,
we adopt an approach described by Hirschmüller et al. [7],
and exploit stereo range data at the inlier detection stage.
The core intuition is that the 3D locations of features must
obey a rigidity constraint, and that this constraint can be
used to identify sets of features that are mutually consistent
(i.e., a clique) prior to computing the frame-to-frame motion
estimate.

This approach can be best described asinlier detection
rather thanoutlier rejection, and offers a number of advan-
tages. First, it is extremely robust to false matches, which
relaxes some of the requirements on the matching stage of
the algorithm. As a consequence, we can simplify this stage
and trade accuracy for speed. Second, the algorithm is well-
equipped to handle dynamic scenes, since each independent
motion gives rise to a separate set of self-consistent features.
While we will not discuss dynamic scenes in this paper, it
should be noted that this algorithm is not confused when the
robot is driving into its own shadow, a known problem for
many algorithms.

There are other properties of the algorithm that should
also be noted. First, it does not require an initial motion
estimate, and, partly as a result, can handle very large image
translations. Second, the feature descriptor is not invariant
to rotation or scaling, so large motions around or along the
optical axis will result in poor performance. This apparent
limitation, however, is largely a design choice: for ground
vehicle applications, rotations around the optical axis are
generally small (since this corresponds to vehicle roll), while
scale changes only become significant at high-speeds and/or
low frame-rates. Furthermore, the non-invariant detectors
used in our algorithm are at least an order of magnitude
faster than their invariant cousins.

The visual odometry algorithm described in this paper
has been employed in a number of programs, including
DARPA LAGR (Learning Applied to Ground Robotics)
and Biodynotics BigDog (BigDog is a quadruped dynamic
walker built by Boston Dynamics) [3]. In the following
sections, we describe the algorithm and implementation
in detail, and consider its application to the BigDog and
LAGR vehicles. We present experimental results from image
sequences totaling over 24000 frames and 1700m of travel.

II. RELATED WORK

Contemporary approaches to visual odometry can be
roughly categorized as being either monocular or stereo,
and employing either feature tracking or feature matching.
Nister [12], for example, describes a monocular approach
that emphasizes feature tracking over small image motions,
and demonstrates the effectiveness of this algorithm for real-
time motion estimation on a variety of ground vehicles.
Matthies [11] describes a stereo approach that also makes
use of feature tracking. This approach was later evolved
into the visual odometry algorithms used on the JPL Mars
Exploration Rovers [10], and on the soon-to-be-launched
Mars Science Lab [8]. The approach described in this pa-
per, however, does not derive from the Matthies/MER/MSL
lineage. Instead, it follows from the approach described by
Hirschm̈uller [7], which uses feature matching rather than
tracking and employs stereo range data for inlier detection.
Our approach both generalizes and simplifies this earlier
work, introducing a more complete inlier detection scheme
(based on the notion of cliques) and simplifying the point-
to-point inlier test to permit faster comparisons.

Finally, we note that Agrawal [1] has recently described
an approach based on stereo feature-matching and used in
the DARPA LAGR program. The results for this algorithm
are comparable with those reported here (see Section V).

In the taxonomy above, we explicitly exclude “batch”
techniques, such as structure-from-motion, bundle-
adjustment and visual SLAM. That is, our interest lies in
incremental, real-time, low-latency methods for estimating
camera motion. As an aside, however, we note there has
been some recent progress on sliding window techniques for
stereo and visual odometry [14], and that these approaches
could be applied to the algorithm presented here.

III. A LGORITHM DESCRIPTION

For our stereo visual odometry algorithm, we assume that
the robot is equipped with a stereo camera pair, and that the
images have been processed using a dense stereo algorithm
(such as [11], [5]). Real-time stereo algorithms typically
proceed through the following steps:

1) Rectification: warp the original left/right images such
that epipolar lines are aligned with the image rows.
These rectified images correspond to the images one
would obtain from a virtual pair of perfectly aligned
perspective cameras.

2) Pre-filtering: smooth the rectified images with an
edge-preserving filter to remove high-frequency com-
ponents. While this is ideally performed using a
Laplacian-of-Gaussian or a bilateral filter [15], a
difference-of-boxes filter is often preferred for the sake
of speed.

3) Correlation: construct a disparity image by locating
matching pixels in the left/right pre-filtered images.
Typical scoring methods for the matching step include
sum-of-absolute differences (SAD) and CENSUS [16],
both of which consider a small window around the

pixel of interest. The disparity at each pixel is propor-
tional to the inverse range.

The inputs available to the visual odometry algorithm, there-
fore, are the raw, rectified, pre-filtered and disparity images.
The algorithm is as follows.

A1. Inputs

Let Ja,Da denote the pre-filtered and disparity images for
framea, acquired at some timeta. Let Jb,Db denote the pre-
filtered and disparity images for frameb, acquired at some
later timetb > ta.

A2. Feature detection: (Ja,Da;Jb,Db) → (Fa;Fb)

Detect features in the pre-filtered imageJa using a standard
corner detector (such as Harris [6] or FAST [13]) and com-
pute the corresponding world coordinates from the disparity
image Da. Discard features with unknown disparity. For
each feature, construct anm × m − 1 descriptor from the
surrounding pixels inJa. We use odd values form and omit
the middle pixel, such that the feature descriptor length is
a multiple of 8; e.g., a 7x7 window yields a descriptor of
length 48. Letfa = (j, w, s) denote a feature with image
locationj, world locationw and descriptors; let Fa denote
the set of all such features.

Repeat for imagesJb andDb to find the feature setFb.
In practice, the first detection step (on framea) can be

omitted: we simply retain the feature setFb from the previous
frame, such that it can becomeFa for the current frame.
With this optimization, the inputs to the algorithm become
the feature setFb → Fa from the previous frame and the
new image pair(Jb,Db).

A2. Construct the score matrix: (Fa, Fb) → S

Compute the score matrixS for all pair-wise combinations of
features inFa andFb using the sum-of-absolute differences
(SAD) between the feature descriptors. Low values in the
scoring matrix indicate that two features are very similar;
high values indicate that they are very different. On machines
with vector instruction sets (such as Intel SSE2), the SAD
operation can be performed on eight bytes simultaneously.

A3. Match features: (Fa, Fb, S) → M

Using the score matrixS, match featuresFa in frame a

with featuresFb in frame b. This is equivalent to the linear
assignment problem, which is typically solved using either
the greedy algorithm (for sub-optimal solutions) or the Hun-
garian method (for optimal solutions). However, since both
of these algorithms are relatively expensive (O(n2 log n) and
O(n3) in the number of features, respectively), we use a
fasterO(n2) assignment algorithm that selects co-occurring
minima in the score matrix. This algorithm can be stated as
follows: for each featurefa ∈ Fa, find the featuref̄b with
the minimum SAD score; for each featurefb ∈ Fb, find the
feature f̄a with the minimum SAD score. Iff̄a = fa and
f̄b = fb, the featuresfa andfb are declared a match.

Let (fa, fb) denote a match between features in framesa

andb, and letM be the set of all matches.

A4. Find the maximum inlier set: M → Q

Compute a consistency matrixW for all pairwise combi-
nations of matches inM , using a simple rigidity constraint
on the world coordinates. A pair of matches is consistent if
the distance between two features in framea (measured in
world coordinates) is identical to the distance between the
corresponding features in frameb. Any pair of matches for
which this is not the case must contain at least one incorrect
match, or must contain features from some independent
mover. At the simplest level, a pair of matches(fa, fb) and
(f ′

a, f ′

b) are consistent iff they satisfy the inequality:

|wa − w′

a| − |wb − w′

b| < δ (1)

wherew denotes the world coordinates of a feature andδ is a
fixed threshold. The corresponding entry in the consistency
matrix W contains a1 if the constraint is satisfied, and0
otherwise. This test can also be generalized to better handle
the quadratic range errors arising from stereo triangulation
(see [7], for example), but the analysis is beyond the scope
of this paper.

Using the matrixW , find the largest set of mutually
consistent matches. This is equivalent to finding the max-
imum clique on a graph with adjacency matrixW . Since the
maximum clique problem is known to be NP-complete, we
use the following sub-optimal algorithm:

1) Initialize the clique to contain the match with the
largest number of consistent matches (i.e., choose the
node with the maximum degree).

2) Find the set of matches compatible with all the matches
already in the clique.

3) Add the match with the largest number consistent
matches.

Steps 2 and 3 are repeated until the set of compatible matches
is empty.

Let Q denote the set of matches(fa, fb) in the inlier set
discovered by this algorithm.

A5. Estimate motion: Q → ∆ab, ǫ

Estimate frame-to-frame camera motion by minimizing the
image re-projection error for all matches in the cliqueQ. We
seek the homogeneous transform∆ab that minimizes the re-
projection error:

ǫ =
∑

(fa,fb)∈Q

(ja − P∆wb)
2 + (jb − P∆−1wa)2 (2)

where j and w are the homogeneous image and world
coordinates, respectively, andP is the camera projection
matrix. The solution is found using the standard Levenberg-
Marquardt least-squares algorithm, with one small modifica-
tion: after finding the initial solution∆ab, we discard any
matches whose re-projection error exceeds a set threshold
and re-run the optimization. This second pass discards any
outliers that survive the inlier detection step.

A6. Validate the solution: (Q, ǫ) → {pass|fail}

Validate the solution against three criteria:
• The number of points in the cliqueQ. At a minimum,

we require three points to generate a unique motion
estimate. In practice, however, we typically demand at
least ten points to ensure that the clique captures the
camera egomotion (as opposed to some other motion in
the scene).

• The co-linearity (or otherwise) of features in the image.
This is done be computing the eigenvalues of the feature
distribution and computing the maximal ratio; values
close to 1 indicate a good spread of features.

• The re-projection errorǫ, which must be below some
threshold (e.g., 0.3 pixels).

A7. Outputs: ∆ab, {pass|fail}

The algorithm outputs the frame-to-frame motion estimate
∆ab and a status flag indicating if the solution is valid. A
covariance matrix is also computed, but not currently used.

Discussion

There are three features of this algorithm that should be
noted. First, the algorithm gains much of its speed by
exploiting stereo pre-processing (rectification, pre-filtering
and correlation). The computation time for visual odometry
is typically a small fraction of the time required for stereo
processing. Second, the algorithm usesinlier detection rather
than outlier rejection for selecting good feature matches.
The clique-based approach described in Step A4 can easily
cope with frames containing 90% outliers, which would
severely tax RANSAC-style outlier-rejection schemes. Third,
the algorithm includes strong validation checks to detect
egregious failures. For autonomous vehicle applications,
failure is generally acceptable if it is reported as such;
unreported failures, on the other hand, can very quickly lead
to catastrophic divergence of the integrated pose estimate.

The key tuning parameters in this algorithm are the feature
descriptor size (A2), clique inlier threshold (A4), miminum
number of features (A6) and re-projection error (A6). None
of these parameters shows a high degree of sensitivity,
however, and one can easily find a set of values that produces
both a high frequency of correctly matched frames and a
very low (or zero) frequency of unreported failures. It should
be noted that the same set of parameter values is used
for all of the experiments described in Sections IV and V.
Algorithm run-time is mainly driven by the feature descritor
size; experimentally, we have found a window size of 7 to
9 to be a good compromise between speed and reliability.

The algorithm also has some key limitations following di-
rectly from the design choices. First, the feature detectorand
descriptors are not scale invariant, such that large motions
along the optical axis will produce relatively few matches.
While we could use a scale invariant feature detector such
as SIFT [9] or SURF [2], these would significantly reduce
our real-time performance; the current corner detector can
process a 640x480 image in a few milliseconds, versus tens
or hundreds of milliseconds for scale invariant detectors.

-6

-4

-2

 0

 2

-2 0 2 4 6 8 10 12 14 16 18 20

y
(m

)

x (m)

Run 1 320x240 10Hz
Run 2 320x240 10Hz
Run 3 320x240 10Hz

Fig. 1. Top-left: the JPL sandbox, with the BigDog camera mounted on a tripod (the tripod is hand-carried). Top-middle and top-right: typical camera
views, showing sand, rocks and leaves. The bright square is aretro-reflector used for ground-truth. Bottom: trajectories estimated by visual odometry (three
runs). The first two runs start at(0, 0) and take clockwise laps around the sandbox; the final run travels straight out and back (twice).

30Hz 15Hz
Run Size Dist. Frames Time 2D RMS err. 3D RMS err. Frames Time 2D RMS err. 3D RMS err.

1 160x120 156m 4815 14.3ms 0.422m (0.27%) 0.824m (0.53%) 2407 14.4ms 0.597m (0.39%) 0.669m (0.44%)
2 160x120 202m 5875 17.8ms 0.723m (0.36%) 0.934m (0.46%) 2937 17.6ms 0.178m (0.09%) 0.382m (0.19%)
3 160x120 89m 2843 19.7ms 0.435m (0.49%) 0.530m (0.60%) 1421 19.2ms 0.092m (0.11%) 0.095m (0.11%)
1 320x240 154m 4815 16.1ms 0.439m (0.28%) 0.554m (0.36%) 2407 16.1ms 0.196m (0.13%) 0.310m (0.20%)
2 320x240 201m 5875 19.3ms 0.200m (0.10%) 0.461m (0.23%) 2937 19.0ms 0.167m (0.08%) 0.436m (0.22%)
3 320x240 88m 2843 22.7ms 0.073m (0.08%) 0.175m (0.20%) 1421 24.1ms 0.029m (0.03%) 0.030m (0.03%)
1 640x480 154m 4815 22.0ms 0.196m (0.13%) 0.235m (0.15%) 2407 20.9ms 0.158m (0.10%) 0.208m (0.14%)
2 640x480 200m 5875 23.3ms 0.091m (0.05%) 0.362m (0.18%) 2937 23.2ms 0.106m (0.05%) 0.274m (0.14%)
3 640x480 88m 2843 27.9ms 0.055m (0.06%) 0.102m (0.12%) 1421 27.7ms 0.046m (0.05%) 0.047m (0.05%)

TABLE I

BIGDOG SANDBOX RESULTS(HAND-HELD CAMERA).

Second, the motion estimator only compares two frames,
and the overall camera trajectory is computed via simple
integration of successive∆’s. As we will show in Section
IV, this can lead to a paradoxical decrease in accuracy
at high frame rates. The alternative is to employ bundle-
adjustment (BA) or simultaneous localization and mapping
(SLAM), but this is not without cost. Most of the relevant
BA/SLAM techniques employ a sliding window of image
frames, such that pose estimates are only reported after the
frame has departed the sliding window (high latency), or are
continuously revised as new measurements arrive (unusual
semantics). In contrast, the stereo visual odometry algorithm
described here is a real-time, low-latency ‘black-box’ whose
output is directly analogous to wheel odometry or inertial
navigation systems.

IV. A PPLICATION 1: BIGDOG

BigDog is a four-legged, dynamically stabilized robot
developed by Boston Dynamics. It is a prototype ‘pack-
mule’ intended for use in rugged off-road terrain, and is
capable of walking, trotting, climbing slopes and stepping
over obstacles. BigDog uses visual odometry for both pose
estimation and terrain reconstruction. For pose estimation,
visual odometry can be combined with inertial data from the
on-board IMU, and with kinematic pose estimates derived
from joint encoders in the legs (i.e., leg odometry). For
terrain reconstruction, stereo range data and visual odometry
pose estimates are fused directly to produce a high-resolution
sliding map of the terrain directly in front of and beneath
the robot. This allows the robot to plan foot placements

around obstacles with centimeter-level accuracy, even if those
obstacles are no longer visible in the camera.

The primary vision sensor on BigDog is a downward-
looking stereo camera pair from Point Grey Research (Bum-
blebee 640x480 monochrome with 40 degree horizontal
field-of-view). To evaluate the performance of visual odome-
try, we collected data from an identical hand-held camera in
the JPL sandbox (see Figure 1). The sandbox is a somewhat
simplified off-road environment, with sand, rocks and a
scattering of fallen leaves. The camera was hand-carried
to simulate the motion of the BigDog vehicle, with two
human legs substituting for the four legs of BigDog (both
produce periodic vertical displacement, albeit at different
frequencies). Three trials were conducted, as shown in Figure
1: runs 1 and 2 are clockwise loops around the sandbox (three
and four laps, respectively) and run 3 is straight out-and-back
(two laps).

Obtaining ground-truth pose estimates for a hand-held
camera is somewhat challenging, and we have therefore
opted to ground-truth the reconstructed terrain rather than
the camera trajectory. Using a TotalStation, we surveyed
four key points in the sandbox (i.e., distinctive rocks),
then manually identified these rocks in the recorded image
sequence. This process establishes pair-wise correspondences
between the survey points and the estimated location of those
points according to visual odometry and stereo ranging. The
two sets of points are related by an unknown 3D rigid-
body transformation, which we estimate via least-squares
optimization (i.e., minimizing the sum-of-squared point-to-
point distances). The results described below represent the
residual errors after solving for this transform.

Table I summarizes the results for this data set. The
raw data was logged at 640x480 resolution at 30Hz, but
we have generated results for multiple camera resolutions
(640x480, 320x240 and 160x120) and frame rates (30Hz
and 15Hz, the latter simulated by dropping every other
frame). The accuracy of visual odometry is indicated by
the reconstruction error, defined as the root-mean-squared
distance between the estimated and surveyed key points. We
distinguish between the 2D error, which includes horizontal
offsets only, and the 3D error, which includes horizontal
and vertical offsets. Note that there are no visual odometry
failures in these results; for all combinations of resolution
and frame rate, the algorithm was able to match a sufficient
set of features across frames.

The first notable feature of these results in Table I is also
the least surprising: in all cases, accuracy improves with
increasing image resolution. For example, on run 2, which
covers 202m over 5875 frames, the 2D RMS error drops
from 44cm at 160x120 to 5cm at 640x480 (processing data
at 30Hz). In this environment, where there are good features
to track on all scales, increased resolution improves feature
localization, which in turn improves the frame-to-frame and
integrated motion estimates.

The second notable result is that the accuracy improves as
the frame ratedecreases. This is initially counter-intuitive,
until one considers that our visual odometry algorithm is es-

timating and integrating sequential frame-to-frame motions.
Therefore, at higher frame rates, we are also integrating more
noise. These results suggest that better accuracy may be
obtained with multi-frame or sliding window estimators (e.g.,
bundle adjustment, visual SLAM and related techniques,
as described in Section III). There is, of course, a lower
bound on the practical frame rate, since any visual odometry
algorithm must have significant image overlap in order to
match features. In the case of BigDog, simple calculations
based on the expected vehicle rotation rates put that lower
bound at around 10 to 15Hz.

Table I lists the processing time for the visual odometry
algorithm running on a single core of a 2.4GHz Core 2
Duo processor. These numbers do not include the stereo
processing time, which ranges from 6ms at 160x120 to 25ms
at 320x240 and 180ms at 640x480. The processing time for
visual odometry ranges 14ms at the lowest resolution to 28ms
at the highest, and does scale directly with image size. If
we consider the steps in the algorithm, we expect the feature
detection stage to scale with the number of image pixels, but
for all subsequent stages to scale with the number of features.
The preferred number of features is one of the parameters to
the algorithm, and is roughly constant across resolutions.

At the desired BigDog frame rate of 10-15Hz, we can
run the full stereo plus visual odometry system in real time
at a resolution 320x240 (approximately 50ms/frame). This
yields an expected 3D reconstruction error of around 40cm
over 200m (0.2% of distance traveled).

V. A PPLICATION 2: LAGR

Visual odometry was an integral component of the JPL
effort for the DARPA LAGR (Learning Applied to Ground
Robotics) program, and was used for both pose estimation
and slip detection. The slip detector compares the vehicle
motion as determined by wheel encoders to the motion
determined by visual odometry, and measures the degree
to which the wheels are spinning in place. This slip signal
is an important input into both the planning and learning
algorithms: the planner uses slip as a virtual bumper (i.e.,if
the robot is ‘digging in’, back up and try a different route),
while the learner uses slip as a training signal (so that the
robot can avoid similar-looking terrain in the future).

The LAGR vehicle is shown in Figure 2; it is equipped
with two stereo camera pairs, wheel encoders and a MEMs
IMU. We employ a very simple filter that fuses visual
odometry, wheel encoder and IMU data. Most of the time,
the filter simply integrates motion estimates from visual
odometry, but falls back on encoders and IMU data when
the visual odometry reports failure.

Data was collected in partially vegetated terrain in the
Arroyo Seco near JPL (see Figure 2). The robot was man-
ually driven around loop course, with four separate runs,
each consisting of multiple laps; about 1200m total distance
traveled. Ground-truth was collected with a TotalStation,by
periodically stopping the robot and measuring the position
of a retro-reflector; approximately 6 survey points were
collected on each lap. As was the case with the BigDog data

 0

 10

 20

-50 -40 -30 -20 -10 0 10 20 30 40 50

y
(m

)

x (m)

Run 1 left 512x384
Run 2 left 512x384
Run 3 left 512x384
Run 4 left 512x384

Fig. 2. Top-left: LAGR robot in the Arroyo Seco. Top-right: Sample terrain types, including grass, bushes, rutted and packed earth. Bottom: trajectories
estimated by visual odometry (four runs). Each run starts at(0, 0) and takes one or more counter-clockwise laps around the course.

VisOdom Encoders
Run Src. Size Frames Dist. Fail Time 2D RMS err. 3D RMS err. 2D RMS err. 3D RMS err.
1 left 256x192 2334 166m 10 4.8ms 0.462m (0.28%) 0.484m (0.29%) 2.575m (1.55%) 3.356m (2.02%)
2 left 256x192 3936 335m 5 7.8ms 0.960m (0.29%) 1.501m (0.45%) 7.196m (2.15%) 8.415m (2.51%)
3 left 256x192 3467 360m 13 7.1ms 1.323m (0.37%) 1.742m (0.48%) 12.053m (3.35%) 13.689m (3.81%)
4 left 256x192 4114 406m 39 7.4ms 2.015m (0.50%) 3.038m (0.75%) 16.349m (4.03%) 17.906m (4.41%)
1 right 256x192 2548 166m 1 7.2ms 1.358m (0.82%) 1.654m (0.99%) 2.575m (1.55%) 3.356m (2.02%)
2 right 256x192 4067 335m 0 7.0ms 1.436m (0.43%) 1.559m (0.47%) 7.196m (2.15%) 8.415m (2.51%)
3 right 256x192 3681 360m 5 8.6ms 0.738m (0.21%) 1.088m (0.30%) 12.053m (3.35%) 13.689m (3.81%)
4 right 256x192 4235 406m 11 8.5ms 1.154m (0.28%) 1.642m (0.40%) 16.349m (4.03%) 17.906m (4.41%)
1 left 512x384 2334 166m 0 17.7ms 0.145m (0.09%) 0.434m (0.26%) 2.575m (1.55%) 3.356m (2.02%)
2 left 512x384 3936 335m 3 20.9ms 0.317m (0.09%) 0.758m (0.23%) 7.196m (2.15%) 8.415m (2.51%)
3 left 512x384 3467 360m 5 16.1ms 0.630m (0.18%) 1.013m (0.28%) 12.053m (3.35%) 13.689m (3.81%)
4 left 512x384 4114 406m 13 22.8ms 0.965m (0.24%) 1.364m (0.34%) 16.349m (4.03%) 17.906m (4.41%)
1 right 512x384 2548 166m 1 19.0ms 0.249m (0.15%) 1.485m (0.89%) 2.575m (1.55%) 3.356m (2.02%)
2 right 512x384 4067 335m 1 14.6ms 0.437m (0.13%) 0.736m (0.22%) 7.196m (2.15%) 8.415m (2.51%)
3 right 512x384 3681 360m 0 17.2ms 0.531m (0.15%) 0.601m (0.17%) 12.053m (3.35%) 13.689m (3.81%)
4 right 512x384 4235 406m 8 13.1ms 0.534m (0.13%) 1.033m (0.25%) 16.349m (4.03%) 17.906m (4.41%)

TABLE II

LAGR ARROYO RESULTS

Fig. 3. Two sets of failed frames from from LAGR Arroyo data set. Note the large image motions (left pair) and obscuring vegetation (right pair).

sets, the ground truth trajectory is related to the estimated
trajectory by an arbitrary 3D rigid-body transform. There-
fore, the results quoted below are the residual errors after
solving for this transform.

Results are summarized in Table II. The vehicle has two
independent, unsynchronized stereo camera pairs, so we
obtain two sets of data (left and right) for each run around the
course. Looking at the full resolution results, we see that the
2D error is less than a meter over 400m of travel (between
0.15% and 0.25%). Compare this with the results for wheel
odometry plus IMU, where the error over the same distance
is 16m (4% of distance traveled). This is despite the fact that
this terrain is relatively favorable for wheel odometry, with
uneven terrain but no slipping or sinking.

This data set was collected on a sunny day, and the robot
is often driving into its own shadow. Self-shadows have
traditionally been a problem for visual odometry algorithms
(particularly on MER); the algorithm tends to lock-onto
strong features at the shadow boundary, and incorrectly
report that the vehicle is stationary. However, with clique-
based inlier detection, feature points on the shadow boundary
are disregarded (not part of the maximum clique) and self-
shadows are therefore ignored.

Unlike the BigDog sandbox results reported in the pre-
vious section, visual odometry reports a number of failures
on this course, some of which are shown in Figure 3. There
are two principle failure modes. First, there are some long
gaps in the logs (each lasting a second or more) when the
logging disks where unable to sustain the frame rate. Not
all of these gaps are successfully bridged by the algorithm,
particularly when the image overlap is small or the scale
change is large. While this is more of a system failure than
a visual odometry failure, it is worth noting that the latter
reports a failure rather than returning an incorrect motion
estimate. The second failure mode occurs when the robot
is close to vegetation at camera-height. The dense stereo
methods we employ fail on nearby vegetation, leaving the
visual odometry with few pixels to work with. Once again,
this is a failure of stereo rather than of visual odometry
per se, but it does highlight a limitation of our approach:
visual odometry will only work in environments where stereo
works. This includes rocky, sandy environments (such as
Mars), but excludes certain vegetated environments on Earth
(e.g., pushing through tall grass).

VI. D ISCUSSION ANDCONCLUSION

In this paper, we have presented results obtained through
“pure” (or nearly pure) visual odometry, demonstrating a
high degree of reliability and an accuracy of better than
0.25% over 400m of travel.

While it may be possible to improve on this result using
multi-frame estimators (e.g., sliding window bundle adjust-
ment), real-world accuracy is limited by other factors. These
include missed frames and poor camera calibration. When
visual odometry fails, we must rely on other, less accurate,
sensors to bridge the gap. In our LAGR experiments, for
example, we have found that a single missed frame, if

poorly timed, can introduce more error than a thousand
correctly matched frames. It is also possible that poor camera
calibration may introduce systematic biases into the motion
estimate. One response to this, which we have not employed
in this paper, is to tune the camera calibration using visual
odometry; i.e., tweak the calibration until the estimated
trajectory fits the ground-truth trajectory. This approachmust
be used with caution, however, since other factors (such as
terrain type and feature distribution) may also contributeto
long term biases.

Having presented the capabilities and limitations of pure
visual odometry, it should be noted that even the most
minimal robot is likely have some form of proprioceptive
sensing (including encoders and/or IMU). The stereo visual
odometry algorithm described in this paper is therefore
intended to augment rather than replace these sensors, and to
work with higher-level pose estimators that fuse data from
multiple sources.

REFERENCES

[1] M. Agrawal and K. Konolige. Real-time localization in outdoor envi-
ronments using stereo vision and inexpensive GPS. InInternational
Conference on Pattern Recognition (ICPR), volume 3, pages 1063–
1068, 2006.

[2] H. Bay, T. Tuytelaars, and L.V. Gool. SURF: speeded-up robust
features. InEuropean Conference on Computer Vision (ECCV), pages
404–417, 2006.

[3] M. Buehler, R. Playter, and M. Raibert. Robots step outside. In
International Symposium of Adaptive Motion of Animals and Machines
(AMAM), Ilmenau, Germany, Sept 2005.

[4] M. A. Fischler and R. C. Bolles. Random sample consensus: a
paradigm for model fitting with applications to image analysisand
automated cartography.Communications of the ACM, 24(6):381–395,
June 1981.

[5] S. B. Goldberg, M. W. Maimone, and L. Matthies. Stereo vision and
rover navigation software for planetary exploration. InProceedings of
the 2002 IEEE Aerospace Conference, volume 5, pages 2024–2036,
2002.

[6] C. J. Harris and M. Stephens. A combined corner and edge detector.
In Proc. 4th Alvey Vision Conferences, pages 147– 151, 1988.

[7] H. Hirschmüller, P.R. Innocent, and J.M. Garibaldi. Fast, un-
constrained camera motion estimation from stereo without tracking
and robust statistics. InControl, Automation, Robotics and Vision
(ICARCV’02), pages 1099–1104, 2002.

[8] A. E. Johnson, S. B. Goldbert, Y. Cheng, and L. H. Matthies.
Robust and efficient stereo feature tracking for visual odometry. In
IEEE International Conference on Robotics and Automation (ICRA),
Pasadena, U.S.A., 2008.

[9] D. G. Lowe. Distinctive image features from scale-invariant keypoints.
International Journal of Computer Vision, 60(2):91–110, Nov 2004.

[10] M. Maimone, Y. Cheng, and L. Matthies. Two years of visual
odometry on the Mars Exploration Rovers.Journal of Field Robotics,
Special Issue on Space Robotics, 24(3):169–186, March 2007.

[11] L. Matthies. Dynamic Stereo Vision. PhD thesis, Dept. of Computer
Science, Carnegia Mellow University, 1989. CMU-CS-89-195.

[12] D. Nister, O. Naroditsky, and J. Bergen. Visual odometryfor ground
vehicle applications.Journal of Field Robotics, 23(1):3–20, Jan 2006.

[13] E. Rosten and T. Drummond. Machine learning for high-speed corner
detection. InEuropean Conference on Computer Vision, 2006.

[14] G. Sibley, L. Matthies, and G. Sukhatme. Bias reduction and filter
convergence for long range stereo. InRobotics Research, volume 28
of Springer Tracts in Advanced Robotics, pages 285–294. 2007.

[15] C. Tomasi and R. Manduchi. Bilateral filtering for gray and color
images. InInternational Conference on Computer Vision (ICCV),
pages 389–394, 98.

[16] R. Zabih and J. Woodfill. Non-parametric local transformsfor com-
puter visual correspondence. InEuropean Conference on Computer
Vision (ECCV), pages 151–158, 1994.

